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Abstract which of 3 forms aB,, term can take. The first form is

Recent interest in applications of wiggler magnets in . )
storage rings has motivated efforts to incorporate their ef- Bz = —C'1 = sin(kyz) sinh(kyy) cos(kss + ¢s)
fects in calculations of beam dynamics. This paper presents B,= C Y cos(kyz) cosh(kyy) cos(kss + ¢s)
an analytic model of wiggler fields that can be used with ks . ‘ )
symplectic integration to evaluate such effects. Coeffi- By = _CE cos(kzx) sinh(kyy) sin(kss + ¢s)
cients needed by the model are generated by fitting to the with k’g =k2+ k2. 2)
results of a finite—element field calculation. The model has
been used successfully in the CESR—c project, which inFhe second form is
poses tolerances of a few partsliot on the modeling of i
2-Tesla superconducting wigglers. In contrast to models B, = C—= sinh(k,x) sinh(k,y) cos(kss + ¢5)
based on Fourier transforms, the model presented here uses ky
a relatively small number of terms, leading to correspond- v = € cosh(kow) cosh(kyy) cos(kss + ¢s)
ingly fast integration times. Fringe fields are included and B; = —Ck—s cosh(kzx) sinh(kyy) sin(kss + &)
no assumption about the periodicity of the field is made. with kz% RrRTY 3)

INTRODUCTION and the third form is

A prerequisite for the study of particle dynamics is the
ability to calculate transfer maps for each element in a stor-

ky . :
B, Ck—" sinh(k,x) sin(k,y) cos(kss + ¢s)
age ring. This is difficult for wigglers (wiggler here can B,
B;

C ! cosh(k,x) cos(kyy) cos(kss + ¢s)
= 70% cosh(k,x) sin(k,y) sin(kss + ¢s)

mean either wiggler or undulator) since analytic formulas
do not exist except in the most simplified cases. Wigglers

Y
can have strong nonlinear components[1, 2], which can be a with k‘Z =k2 k2. (4)
major limitation on the dynamic aperture, and impose strin- '
gent conditions on any analytic approximations. k, is considered to be a function &f andk, and the re-

Symplectic integration is an excellent technique for dofationship between them ensures that Maxwell's equations
ing tracking and for constructing transfer maps|[3]. In ordeare satisfied.
to do symplectic integration through a wiggler, however, Given a calculation or measurement of the field at a set
one needs to know the field as well as the gradient araf points Bgata, the problem is to find a set oV terms
higher derivatives. This generally precludes simply usinguch thaBg; andB.., agree to some given precision set
data from a measurement or a calculation since the discrdtg how accurately one needs to be able to track through a
nature of the data will make the higher derivatives inaccuwiggler. This is a standard problem in nonlinear optimiza-
rate. What is needed is a model functional form that fition. The solution is to minimize a merit functiavf
the data and can be easily and quickly differentiated. Such N
a model is presented below. This model has the advantage _ 2
that end fields are easily incorporated into the model. M= dag:pts [Brie =~ Baaral” + e nz::l Cal- )
FIELD MODEL The second term i is to help preclude solutions with de-

generate terms that tend to cancel one another. The weight

Planar symmetry is assumed and the model functiong| snqoyid be set just large enough to prevent this but not so
form for the magnetic field of a wiggleBg;(z,y, s) is large as to unduly distort the fit.

written as a sum ofV terms The minimization ofM can be done by any number of

N well known algorithms[4, 5]. The fitting process is simpli-
Bg: = Z B.. (2,9, 5;Cn, kun, ksny bsn, fn) . (1)  fied since the three forms can be combined into one contin-
n=1 uous function via
Each termB,, is parameterized by 5 quantiti€§ k., ks, Form#1 0 < kup
¢s, andf. The indexf,, = {1, 2, or 3} is used to designate B, = { FOrM#2 —|ken| < kyn <0 (6)
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Figure 1: B, as a function ok atz = y = 0. The data figyre 2: B, as a function of aty = 0 ands = 0.9m. The
points are from a finite element modeling program. Th@ata points are from a finite element modeling program.
curve is calculated from an 82 term fit. The curve is calculated from an 82 term fit.

Once By, is calculated, symplectic integration is per-
formed using the Hamiltoniafl (z, p., y, py, 2, 0; s) inthe
paraxial approximation

andz for the CESR—c 8—pole wiggler are shown in Figs. 1
and 2. 82 terms were used for the fit. The peak field is about
2 T and the RMS of the differend®q.t, — Brit| was 9 G
(pr —az)*  (py —ay)? 7 which gives an RMS to peak field ratio of 0.05%. The grad-
2(1+9) 200+6) Qs 5 ) ual roll-off of B, as a function ofr shows the advantage
. . of allowing thek,,, to vary continuously instead of using
wherep, , = Py, /P is the normalized transverse MO-4 Fourier series. With a Fourier series the, would be

m_ent;ljml,é - ﬁ_E/lPoc 'S the rlelgtlve er;]ergyfdewatlon, quantized which would necessitate the use of more terms
z is the longitudinal position relative to the reference pary, e fit and slow any symplectic integration.
ticle, anda(z,y,s) = gA/Pyc is the normalized vector . ) : .

. ; ... Figs. 3 and 4 show tracking simulation results for the
potential. To save on computational speed, the gauge WIth . SESR—c 8-nole wiaaler. Fia. 3 showsat the end of
a; = 0is used in the calculations. With this choice of b ggler. g WS

the wiggler as a function of at the start with a starting
gauge, fprmulgs foa(x, y, s) from Egs. (2), (3), and (4) condition ofy = 20 mm. Fig. 4a showsp, at the end as a
are readily derived.

function ofy at the start witheg; ..+ Set at 30 mm. The solid

The symplectic integration procedure is given by Wu eltmes in Figs. 3 and 4a are the results of using a Runge—

al.[6] with the modification that Wu’s prescription uses th . . . .
4. = 0 gauge. This procedure has been integrated ir%utta(RK) integrator with adaptive step size control[4] and

. . A with the field values obtained from interpolating the table
the PTC (Polymorphic Tracking Code) subroutine I'bra“from OPERA—3D. The dashed lines arg from gsymplectic
of Etienne Forest[7] which in turn has been integrated int%te ration (SI) uéin the fitted field and 250 intearation
the Cornell BMAD particle simulation software library[8]. 9 g 9

— i t
A 274 order symplectic integrator{3] is used for the cal->tePs: The dash-dotted lines are from*a drder Taylor

culations. 4" order and 8" order integrators were also map (TM.) which 1S generated using symplectic integration
¥Vlth 250 integration steps.

tried but, it was found, that after adjusting the number o i ) g ) ,
integration steps to achieve a given accuracy, tHeogder K tracking, since it is derived directly from the equa-
integrator was fastest. This is not surprising given the Iargttg)ns of mojuon aqd the magnetic field table, IS the gold
higher—order nonlinearities inherent in a wiggler field. ~ Stendard with which to compare other tracking results.
Fig. 4b shows the difference between the Sl and RK track-
ing as well as the difference between the TM and RK track-
CESR-C WIGGLER ing. Additionally, for comparison, a line is shown whose
The wiggler magnets being installed in the Cornelflope represents a tune shiftf) = 0.001 assuming &
CESR-c storage ring[9] have been modeled using tid 10 m. The Sl tracking agrees well with the RK, better
above procedure. Using the finite element modeling préhan4 prad in Fig. 3 and prad in Fig. 4. Slope differences
gram OPERA-3D, a table of field versus position was gerf the curves are also small, representing tune shifts of less
erated. The validity of the field calculations was experithan 0.001 (a3 = 10 m) everywhere in the figures. The
mentally confirmed by measurements of tune as a functigifivantage of the Sl tracking is that it preserves the Paincar
of beam position in a wiggler[10]. The spacing betweeinvariants, such as phase space density, while the RK does
points in the table was 4 mm horizontally, 2 mm verti-not. This is an important consideration in long term track-
cally, and 2 mm longitudinally. The extent of the table wa$ng where RK can give unphysical results.
+48 mm horizontally,=26 mm vertically andl.6 m longi- The TM also show excellent agreement with the RK
tudinally. Table data and fit curves 8%, as a function ok  tracking except in Fig. 3 when the magnitudexds larger
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than 30 mm or so. In the domain where the TM agrees 0% ————F~— b~ )
with the RK, the TM can be used for such purposes as lat- Ystart (MM)

tice design and other analyses that are not sensitive to non- ) . :
symplectic errors. The advantage of the TMis that it is fasoﬁgure 4 a)_oy atthe er_1d ofthe W|ggler as a functionypt

In the present instance the TM was over a factor of 30 fastg?e start using three different tracking r_nethods. Atthe start
than the other two methods. (This does not include the tinfg = Pv = 9 = 0 andz = 30mm. b) Difference between

to calculate the TM to begin with, but that only has to gﬁK tracking and the two othgr methods. Also shown is a
done once). To overcome the non—-symplecticity of the T™"® that represents a tune shiftAt) = 0.001.

it can be partially inverted to form a symplectic generat-

ing function[3]. Preliminary investigations comparing thecan be modeled.

long term tracking results from Sl and from a generating

function show good agreement. REFERENCES
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